using MultiversalDiplomacy.Model; using MultiversalDiplomacy.Orders; namespace MultiversalDiplomacy.Adjudicate; /// /// Adjudicator for the movement phase. /// public class MovementPhaseAdjudicator : IPhaseAdjudicator { /// /// Base class for adjudication decisions. The decision-based adjudication algorithm is based /// on DATC section 5 and "The Math of Adjudication" by Lucas Kruijswijk, respectively found at /// http://web.inter.nl.net/users/L.B.Kruijswijk/#5 and /// http://uk.diplom.org/pouch/Zine/S2009M/Kruijswijk/DipMath_Chp1.htm /// private abstract class AdjudicationDecision { public abstract bool Resolved { get; } } private abstract class BinaryAdjudicationDecision : AdjudicationDecision { public bool? Outcome { get; private set; } = null; public override bool Resolved => this.Outcome != null; public bool Update(bool outcome) { if (this.Outcome == null) { this.Outcome = outcome; return true; } if (this.Outcome != outcome) { string name = this.GetType().Name; throw new ArgumentException( $"Cannot reverse adjudication of {name} from {this.Outcome} to {outcome}"); } return false; } } private abstract class NumericAdjudicationDecision : AdjudicationDecision { public int MinValue { get; private set; } = 0; public int MaxValue { get; private set; } = 99; public override bool Resolved => this.MinValue == this.MaxValue; public bool Update(int min, int max) { if (min < this.MinValue || max > this.MaxValue) { string name = this.GetType().Name; throw new ArgumentException( $"Cannot reverse adjudication of {name} from ({this.MinValue},{this.MaxValue})" + $" to ({min},{max})"); } bool updated = this.MinValue != min || this.MaxValue != max; this.MinValue = min; this.MaxValue = max; return updated; } } private class IsDislodged : BinaryAdjudicationDecision { public UnitOrder Order { get; } public List Incoming { get; } public IsDislodged(UnitOrder order, IEnumerable incoming) { this.Order = order; this.Incoming = incoming.ToList(); } } private class HasPath : BinaryAdjudicationDecision { public MoveOrder Order { get; } public HasPath(MoveOrder order) { this.Order = order; } } private class GivesSupport : BinaryAdjudicationDecision { public SupportOrder Order { get; } public List Cuts { get; } public GivesSupport(SupportOrder order, IEnumerable cuts) { this.Order = order; this.Cuts = cuts.ToList(); } } private class HoldStrength : NumericAdjudicationDecision { public Province Province { get; } public UnitOrder? Order { get; } public List Supports { get; } public HoldStrength(Province province, UnitOrder? order = null) { this.Province = province; this.Order = order; this.Supports = new(); } } private class AttackStrength : NumericAdjudicationDecision { public MoveOrder Order { get; } public List Supports { get; } public MoveOrder? OpposingMove { get; } public AttackStrength(MoveOrder order, IEnumerable supports, MoveOrder? opposingMove = null) { this.Order = order; this.Supports = supports.ToList(); this.OpposingMove = opposingMove; } } private class DefendStrength : NumericAdjudicationDecision { public MoveOrder Order { get; } public List Supports { get; } public DefendStrength(MoveOrder order, IEnumerable supports) { this.Order = order; this.Supports = supports.ToList(); } } private class PreventStrength : NumericAdjudicationDecision { public MoveOrder Order { get; } public List Supports { get; } public MoveOrder? OpposingMove { get; } public PreventStrength(MoveOrder order, IEnumerable supports, MoveOrder? opposingMove = null) { this.Order = order; this.Supports = supports.ToList(); this.OpposingMove = opposingMove; } } private class DoesMove : BinaryAdjudicationDecision { public MoveOrder Order { get; } public MoveOrder? OpposingMove { get; } public List Competing { get; } public DoesMove(MoveOrder order, MoveOrder? opposingMove, IEnumerable competing) { this.Order = order; this.OpposingMove = opposingMove; this.Competing = competing.ToList(); } } private class Decisions { public Dictionary IsDislodged { get; } public Dictionary HasPath { get; } public Dictionary GivesSupport { get; } public Dictionary HoldStrength { get; } public Dictionary AttackStrength { get; } public Dictionary DefendStrength { get; } public Dictionary PreventStrength { get; } public Dictionary DoesMove { get; } public List UnresolvedDecisions { get; } public Decisions(List orders) { this.IsDislodged = new(); this.HasPath = new(); this.GivesSupport = new(); this.HoldStrength = new(); this.AttackStrength = new(); this.DefendStrength = new(); this.PreventStrength = new(); this.DoesMove = new(); foreach (UnitOrder order in orders.Cast()) { // Create a dislodge decision for this unit. List incoming = orders .OfType() .Where(move => move.Location.Province == order.Unit.Location.Province) .ToList(); this.IsDislodged[order.Unit] = new(order, incoming); // Ensure a hold strength decision exists. Province province = order.Unit.Location.Province; if (!this.HoldStrength.ContainsKey(province)) { this.HoldStrength[province] = new(province, order); } if (order is MoveOrder move) { // Find supports corresponding to this move. List supports = orders .OfType() .Where(support => support.IsSupportFor(move)) .ToList(); // Determine if this move is a head-to-head battle. MoveOrder? opposingMove = orders .OfType() .FirstOrDefault(other => other != null && other.IsOpposing(move), null); // Find competing moves. List competing = orders .OfType() .Where(other => other.Location.Province == move.Location.Province) .ToList(); // Create the move-related decisions. this.HasPath[move] = new(move); this.AttackStrength[move] = new(move, supports, opposingMove); this.DefendStrength[move] = new(move, supports); this.PreventStrength[move] = new(move, supports, opposingMove); this.DoesMove[move] = new(move, opposingMove, competing); // Ensure a hold strength decision exists for the destination. Province dest = move.Location.Province; if (!this.HoldStrength.ContainsKey(dest)) { this.HoldStrength[dest] = new(dest); } } else if (order is SupportOrder support) { // Create the support decision. this.GivesSupport[support] = new(support, incoming); // Ensure a hold strength decision exists for the target's province. Province target = support.Target.Location.Province; if (!this.HoldStrength.ContainsKey(target)) { this.HoldStrength[target] = new(target); } if (support is SupportHoldOrder supportHold) { this.HoldStrength[target].Supports.Add(supportHold); } else if (support is SupportMoveOrder supportMove) { // Ensure a hold strength decision exists for the target's destination. Province dest = supportMove.Location.Province; if (!this.HoldStrength.ContainsKey(dest)) { this.HoldStrength[dest] = new(dest); } } } } this.UnresolvedDecisions = new List() .Concat(this.IsDislodged.Values) .Concat(this.HasPath.Values) .Concat(this.GivesSupport.Values) .Concat(this.HoldStrength.Values) .Concat(this.AttackStrength.Values) .Concat(this.DefendStrength.Values) .Concat(this.PreventStrength.Values) .Concat(this.DoesMove.Values) .ToList(); } } public static IPhaseAdjudicator Instance { get; } = new MovementPhaseAdjudicator(); public List ValidateOrders(World world, List orders) { // The basic workflow of this function will be to look for invalid orders, remove these // from the working set of orders, and then perform one final check for duplicate orders // at the end. This is to comply with DATC 4.D.3's requirement that a unit that receives // a legal and an illegal order follows the legal order rather than holding. List validationResults = new List(); // Invalidate any orders that aren't a legal type for this phase and remove them from the // working set. AdjudicatorHelpers.InvalidateWrongTypes( new List { typeof(HoldOrder), typeof(MoveOrder), typeof(ConvoyOrder), typeof(SupportHoldOrder), typeof(SupportMoveOrder) }, ref orders, ref validationResults); // Invalidate any orders by a power that were given to another power's units and remove // them from the working set. AdjudicatorHelpers.InvalidateWrongPower(orders, ref orders, ref validationResults); // Since all the order types in this phase are UnitOrders, downcast to get the Unit. List unitOrders = orders.Cast().ToList(); // Invalidate any order given to a unit in the past. AdjudicatorHelpers.InvalidateIfNotMatching( order => !order.Unit.Season.Futures.Any(), ValidationReason.IneligibleForOrder, ref unitOrders, ref validationResults); /*************** * HOLD ORDERS * ***************/ // Hold orders are always valid. List holdOrders = unitOrders.OfType().ToList(); /*************** * MOVE ORDERS * ***************/ // Move order validity is far more complicated, due to multiversal time travel and convoys. List moveOrders = unitOrders.OfType().ToList(); // Trivial check: armies cannot move to water and fleets cannot move to land. AdjudicatorHelpers.InvalidateIfNotMatching( order => (order.Unit.Type == UnitType.Army && order.Location.Type == LocationType.Land) || (order.Unit.Type == UnitType.Fleet && order.Location.Type == LocationType.Water), ValidationReason.IllegalDestinationType, ref moveOrders, ref validationResults); // Trivial check: a unit cannot move to where it already is. AdjudicatorHelpers.InvalidateIfNotMatching( order => !(order.Location == order.Unit.Location && order.Season == order.Unit.Season), ValidationReason.DestinationMatchesOrigin, ref moveOrders, ref validationResults); // If the unit is moving to a valid destination that isn't where it already is, then the // move order is valid if there is a path from the origin to the destination. In the easy // case, the destination is directly adjacent to the origin with respect to the map, the // turn, and the timeline. These moves are valid. Any other move must be checked for // potential validity as a convoy move. ILookup moveOrdersByAdjacency = moveOrders .ToLookup(order => // Map adjacency order.Unit.Location.Adjacents.Contains(order.Location) // Turn adjacency && Math.Abs(order.Unit.Season.Turn - order.Season.Turn) <= 1 // Timeline adjacency && order.Unit.Season.InAdjacentTimeline(order.Season)); List adjacentMoveOrders = moveOrdersByAdjacency[true].ToList(); List nonAdjacentMoveOrders = moveOrdersByAdjacency[false].ToList(); // Only armies can move to non-adjacent destinations, since fleets cannot be convoyed. AdjudicatorHelpers.InvalidateIfNotMatching( order => order.Unit.Type == UnitType.Army, ValidationReason.UnreachableDestination, ref nonAdjacentMoveOrders, ref validationResults); // For all remaining convoyable move orders, check if there is a path between the origin // and the destination. AdjudicatorHelpers.InvalidateIfNotMatching( order => PathFinder.ConvoyPathExists(world, order), ValidationReason.UnreachableDestination, ref nonAdjacentMoveOrders, ref validationResults); /***************** * CONVOY ORDERS * *****************/ // A convoy order must be to a fleet and target an army. List convoyOrders = unitOrders.OfType().ToList(); AdjudicatorHelpers.InvalidateIfNotMatching( order => order.Unit.Type == UnitType.Fleet && order.Target.Type == UnitType.Army, ValidationReason.InvalidOrderTypeForUnit, ref convoyOrders, ref validationResults); // A convoy for an illegal move is illegal, which means all the move validity checks // now need to be repeated for the convoy target. // Trivial check: cannot convoy to non-coastal province. AdjudicatorHelpers.InvalidateIfNotMatching( order => order.Location.Type == LocationType.Land && order.Location.Province.Locations.Any(loc => loc.Type == LocationType.Water), ValidationReason.IllegalDestinationType, ref convoyOrders, ref validationResults); // Trivial check: cannot convoy a unit to its own location AdjudicatorHelpers.InvalidateIfNotMatching( order => !( order.Location == order.Target.Location && order.Season == order.Target.Season), ValidationReason.DestinationMatchesOrigin, ref convoyOrders, ref validationResults); // By definition, the move enabled by a convoy order is a convoyable move order, so it // should be checked for a convoy path. AdjudicatorHelpers.InvalidateIfNotMatching( order => PathFinder.ConvoyPathExists(world, order), ValidationReason.UnreachableDestination, ref convoyOrders, ref validationResults); /*********************** * SUPPORT-HOLD ORDERS * ***********************/ // Support-hold orders are typically valid if the supporting unit can move to the // destination. List supportHoldOrders = unitOrders.OfType().ToList(); // Support-hold orders are invalid if the unit supports itself. AdjudicatorHelpers.InvalidateIfNotMatching( order => order.Unit != order.Target, ValidationReason.NoSelfSupport, ref supportHoldOrders, ref validationResults); // Support-hold orders are invalid if the supporting unit couldn't move to the destination // without a convoy. This is the same direct adjacency calculation as above, except that // the supporting unit only needs to be able to move to the *province*, even if the target // is holding in a location within that province that the supporting unit couldn't move to. // The reverse is not true: a unit cannot support another province if that province is only // reachable from a different location in the unit's province. AdjudicatorHelpers.InvalidateIfNotMatching( order => // Map adjacency with respect to province order.Unit.Location.Adjacents.Any( adjLocation => adjLocation.Province == order.Target.Location.Province) // Turn adjacency && Math.Abs(order.Unit.Season.Turn - order.Target.Season.Turn) <= 1 // Timeline adjacency && order.Unit.Season.InAdjacentTimeline(order.Target.Season), ValidationReason.UnreachableSupport, ref supportHoldOrders, ref validationResults); /*********************** * SUPPORT-MOVE ORDERS * ***********************/ // Support-move orders, like support-hold orders, are typically valid if the supporting // unit can move to the destination. List supportMoveOrders = unitOrders.OfType().ToList(); // Support-move orders are invalid if the unit supports a move to any location in its own // province. AdjudicatorHelpers.InvalidateIfNotMatching( order => order.Unit.Location.Province != order.Location.Province, ValidationReason.NoSupportMoveAgainstSelf, ref supportMoveOrders, ref validationResults); // Support-move orders, like support-hold orders, are valid only if the supporting unit // can reach the destination *province* of the move, even if the destination *location* // is unreachable (DATC 6.B.4). The same is not true of reachability from another location // in the supporting unit's province (DATC 6.B.5). AdjudicatorHelpers.InvalidateIfNotMatching( order => // Map adjacency with respect to province order.Unit.Location.Adjacents.Any( adjLocation => adjLocation.Province == order.Location.Province) // Turn adjacency && Math.Abs(order.Unit.Season.Turn - order.Season.Turn) <= 1 // Timeline adjacency && order.Unit.Season.InAdjacentTimeline(order.Season), ValidationReason.UnreachableSupport, ref supportMoveOrders, ref validationResults); // One more edge case: support-move orders by a fleet for an army are illegal if that army // requires a convoy and the supporting fleet is a part of the only convoy path (DATC // 6.D.31). // TODO: support convoy path check with "as if this fleet were missing" // Collect the valid orders together unitOrders = holdOrders.Cast() .Concat(adjacentMoveOrders) .Concat(nonAdjacentMoveOrders) .Concat(convoyOrders) .Concat(supportHoldOrders) .Concat(supportMoveOrders) .ToList(); // DATC 4.D.3 prefers that multiple orders to the same unit in the same order set be // replaced by a hold order. Since this function only takes one combined list of orders, // it is assumed that the caller has combined the order sets from all powers in a way that // is compliant with DATC 4.D.1-2. If there are still duplicate orders in the input, they // were not addressed by 4.D.1-2 and will be handled according to 4.D.3, i.e. replaced with // hold orders. Note that this happens last, after all other invalidations have been // applied in order to comply with what 4.D.3 specifies about illegal orders. List duplicateOrderedUnits = unitOrders .GroupBy(o => o.Unit) .Where(orderGroup => orderGroup.Count() > 1) .Select(orderGroup => orderGroup.Key) .ToList(); List duplicateOrders = unitOrders .Where(o => duplicateOrderedUnits.Contains(o.Unit)) .ToList(); List validOrders = unitOrders.Except(duplicateOrders).ToList(); validationResults = validationResults .Concat(duplicateOrders.Select(o => o.Invalidate(ValidationReason.DuplicateOrders))) .Concat(validOrders.Select(o => o.Validate(ValidationReason.Valid))) .ToList(); // Finally, add implicit hold orders for units without legal orders. List allOrderableUnits = world.Units .Where(unit => !unit.Season.Futures.Any()) .ToList(); HashSet orderedUnits = validOrders.Select(order => order.Unit).ToHashSet(); List unorderedUnits = allOrderableUnits .Where(unit => !orderedUnits.Contains(unit)) .ToList(); List implicitHolds = unorderedUnits .Select(unit => new HoldOrder(unit.Power, unit)) .ToList(); validationResults = validationResults .Concat(implicitHolds.Select(o => o.Validate(ValidationReason.Valid))) .ToList(); return validationResults; } public (List results, World updated) AdjudicateOrders( World world, List orders) { // Define all adjudication decisions to be made. Decisions decisions = new Decisions(orders); // Adjudicate all decisions. bool progress = false; do { progress = false; foreach (AdjudicationDecision decision in decisions.UnresolvedDecisions.ToList()) { progress |= ResolveDecision(decision, world, decisions); if (decision.Resolved) decisions.UnresolvedDecisions.Remove(decision); } } while (progress); if (decisions.UnresolvedDecisions.Any()) { throw new ApplicationException("Some orders not resolved!"); } List adjudications = new(); // All orders other than move orders are hold orders with extra steps. ILookup moveOrders = orders.ToLookup(order => order is MoveOrder); List nonMoveOrders = moveOrders[false].ToList(); // All moves to a particular season in a single phase result in the same future. Keep a // record of when a future season has been created. Dictionary createdFutures = new(); List createdUnits = new(); List retreats = new(); // For each move order with a successful does-move decision, ensure the future exists and // progress the unit to the future. foreach (MoveOrder move in moveOrders[true].Cast()) { DoesMove doesMove = decisions.DoesMove[move]; if (doesMove.Outcome == true) { if (!createdFutures.TryGetValue(move.Season, out Season? future)) { // A timeline doesn't fork unless it already has a continuation. future = move.Season.Futures.Any() ? move.Season.MakeNext() : move.Season.MakeFork(); createdFutures[move.Season] = future; } createdUnits.Add(move.Unit.Next(move.Location, future)); } else { // If the move order failed, the moving unit will stay put, which puts it in the // same bucket as the hold orders. nonMoveOrders.Add(move); } adjudications.Add(new(move, doesMove.Outcome == true)); } foreach (UnitOrder order in nonMoveOrders.Cast()) { if (!createdFutures.TryGetValue(order.Unit.Season, out Season? future)) { // Any unit given an order is, by definition, at the front of a timeline. future = order.Unit.Season.MakeNext(); createdFutures[order.Unit.Season] = future; } // For each stationary unit that wasn't dislodged, continue it into the future. IsDislodged isDislodged = decisions.IsDislodged[order.Unit]; if (isDislodged.Outcome == false) { createdUnits.Add(order.Unit.Next(order.Unit.Location, future)); } else { // Create a retreat for each dislodged unit. // TODO check valid retreats and disbands var validRetreats = order.Unit.Location.Adjacents .Select(loc => (future, loc)) .ToList(); RetreatingUnit retreat = new(order.Unit, validRetreats); retreats.Add(retreat); } if (order is SupportOrder support) { adjudications.Add(new(support, decisions.GivesSupport[support].Outcome == true)); } else { adjudications.Add(new(order, isDislodged.Outcome == false)); } } // TODO provide more structured information about order outcomes World updated = world .WithSeasons(world.Seasons.Concat(createdFutures.Values)) .WithUnits(world.Units.Concat(createdUnits)) .WithRetreats(retreats); return (adjudications, updated); } private bool ResolveDecision(AdjudicationDecision decision, World world, Decisions decisions) => decision.Resolved ? false : decision switch { IsDislodged d => ResolveIsUnitDislodged(d, world, decisions), HasPath d => ResolveDoesMoveHavePath(d, world, decisions), GivesSupport d => ResolveIsSupportGiven(d, world, decisions), HoldStrength d => ResolveHoldStrength(d, world, decisions), AttackStrength d => ResolveAttackStrength(d, world, decisions), DefendStrength d => ResolveDefendStrength(d, world, decisions), PreventStrength d => ResolvePreventStrength(d, world, decisions), DoesMove d => ResolveDoesUnitMove(d, world, decisions), _ => throw new NotSupportedException($"Unknown decision type: {decision.GetType()}") }; private bool ResolveIsUnitDislodged(IsDislodged decision, World world, Decisions decisions) { bool progress = false; // If this unit was ordered to move and is doing so successfully, it cannot be dislodged // even if another unit will successfully move into the province. if (decision.Order is MoveOrder moveOrder) { DoesMove move = decisions.DoesMove[moveOrder]; progress |= ResolveDecision(move, world, decisions); // If this unit received a move order and the move is successful, it cannot be // dislodged. if (move.Outcome == true) { progress |= decision.Update(false); return progress; } // If the move is undecided, then the dislodge decision is undecidable until then. if (move.Outcome == null) { return progress; } } // If this unit isn't moving from its current province, then it is dislodged if another // unit has a successful move into its province, and it is not dislodged if every unit that // could move into its province fails to do so. bool potentialDislodger = false; foreach (MoveOrder dislodger in decision.Incoming) { DoesMove move = decisions.DoesMove[dislodger]; progress |= ResolveDecision(move, world, decisions); // If at least one invader will move, this unit is dislodged. if (move.Outcome == true) { progress |= decision.Update(true); return progress; } // If the invader could potentially move, the dislodge decision can't be resolved to // false. if (move.Outcome != false) { potentialDislodger = true; } } if (!potentialDislodger) { progress |= decision.Update(false); } return progress; } private bool ResolveDoesMoveHavePath(HasPath decision, World world, Decisions decisions) { bool progress= false; // If the origin and destination are adjacent, then there is a path. if (// Map adjacency decision.Order.Unit.Location.Adjacents.Contains(decision.Order.Location) // Turn adjacency && Math.Abs(decision.Order.Unit.Season.Turn - decision.Order.Season.Turn) <= 1 // Timeline adjacency && decision.Order.Unit.Season.InAdjacentTimeline(decision.Order.Season)) { progress |= decision.Update(true); return progress; } // If the origin and destination are not adjacent, then the decision resolves to whether // there is a path of convoying fleets that (1) have matching orders and (2) are not // dislodged. // The adjudicator should have received a validated set of orders, so any illegal move // with no possible convoy path should have been invalidated. throw new NotImplementedException(); // TODO } private bool ResolveIsSupportGiven(GivesSupport decision, World world, Decisions decisions) { bool progress = false; // Support is cut when a unit moves into the supporting unit's province with nonzero // attack strength. Support is given when there is known to be no such unit. bool potentialNonzeroAttack = false; foreach (MoveOrder cut in decision.Cuts) { AttackStrength attack = decisions.AttackStrength[cut]; progress |= ResolveDecision(attack, world, decisions); // If at least one attack has a nonzero minimum, the support decision can be resolved // to false. if (attack.MinValue > 0) { progress |= decision.Update(false); return progress; } // If at least one attack has a nonzero maximum, the support decision can't be resolved // to true. if (attack.MaxValue > 0) { potentialNonzeroAttack = true; } } // Support is also cut if the unit is dislodged. IsDislodged dislodge = decisions.IsDislodged[decision.Order.Unit]; progress |= ResolveDecision(dislodge, world, decisions); if (dislodge.Outcome == true) { progress |= decision.Update(false); return progress; } // If no attack has potentially nonzero attack strength, and the dislodge decision is // resolved to false, then the support is given. if (!potentialNonzeroAttack && dislodge.Outcome == false) { progress |= decision.Update(true); return progress; } // Otherwise, the support remains undecided. return progress; } private bool ResolveHoldStrength(HoldStrength decision, World world, Decisions decisions) { bool progress = false; // If no unit is in the province, the hold strength is zero. if (decision.Order == null) { progress |= decision.Update(0, 0); return progress; } // If a unit with a move order is in the province, the strength depends on the move success. if (decision.Order is MoveOrder move) { DoesMove moves = decisions.DoesMove[move]; progress |= ResolveDecision(moves, world, decisions); progress |= decision.Update( moves.Outcome != false ? 0 : 1, moves.Outcome == true ? 0 : 1); return progress; } // If a unit without a move order is in the province, add up the supports. else { int min = 1; int max = 1; foreach (SupportHoldOrder support in decision.Supports) { GivesSupport givesSupport = decisions.GivesSupport[support]; progress |= ResolveDecision(givesSupport, world, decisions); if (givesSupport.Outcome == true) min += 1; if (givesSupport.Outcome != false) max += 1; } progress |= decision.Update(min, max); return progress; } } private bool ResolveAttackStrength(AttackStrength decision, World world, Decisions decisions) { bool progress = false; // If there is no path, the attack strength is zero. var hasPath = decisions.HasPath[decision.Order]; progress |= ResolveDecision(hasPath, world, decisions); if (hasPath.Outcome == false) { progress |= decision.Update(0, 0); return progress; } // If there is a head to head battle, a unit at the destination that isn't moving away, or // a unit at the destination that will fail to move away, then the attacking unit will have // to dislodge it. UnitOrder? destOrder = decisions.HoldStrength[decision.Order.Location.Province].Order; DoesMove? destMoveAway = destOrder is MoveOrder moveAway ? decisions.DoesMove[moveAway] : null; if (destMoveAway != null) { progress |= ResolveDecision(destMoveAway, world, decisions); } if (// In any case here, there will have to be a unit at the destination with an order, // which means that destOrder will have to be populated. Including this in the if //condition lets the compiler know it won't be null in the if block. destOrder != null && (// Is head to head decision.OpposingMove != null // Is not moving away || destMoveAway == null // Is failing to move away || destMoveAway.Outcome == false)) { Power destPower = destOrder.Unit.Power; if (decision.Order.Unit.Power == destPower) { // Cannot dislodge own unit. progress |= decision.Update(0, 0); return progress; } else { // Supports won't help to dislodge units of the same power as the support. int min = 1; int max = 1; foreach (SupportMoveOrder support in decision.Supports) { if (support.Unit.Power == destPower) continue; GivesSupport givesSupport = decisions.GivesSupport[support]; progress |= ResolveDecision(givesSupport, world, decisions); if (givesSupport.Outcome == true) min += 1; if (givesSupport.Outcome != false) max += 1; } progress |= decision.Update(min, max); return progress; } } else if (destMoveAway != null && destMoveAway.Outcome == null) { // If the unit at the destination has an undecided move order, then the minimum tracks // the case where it doesn't move and the attack strength is mitigated by supports not // helping to dislodge units of the same power as the support. The maximum tracks the // case where it does move and the attack strength is unmitigated. Power destPower = destMoveAway.Order.Unit.Power; int min = 1; int max = 1; foreach (SupportMoveOrder support in decision.Supports) { GivesSupport givesSupport = decisions.GivesSupport[support]; progress |= ResolveDecision(givesSupport, world, decisions); if (support.Unit.Power != destPower && givesSupport.Outcome == true) min += 1; if (givesSupport.Outcome != false) max += 1; } // Force min to zero in case of an attempt to disloge a unit of the same power. if (decision.Order.Unit.Power == destPower) min = 0; progress |= decision.Update(min, max); return progress; } else { // If the unit at the destination is going somewhere else, then attack strength // includes all supports from all powers. int min = 1; int max = 1; foreach (SupportMoveOrder support in decision.Supports) { GivesSupport givesSupport = decisions.GivesSupport[support]; progress |= ResolveDecision(givesSupport, world, decisions); if (givesSupport.Outcome == true) min += 1; if (givesSupport.Outcome != false) max += 1; } progress |= decision.Update(min, max); return progress; } } private bool ResolveDefendStrength(DefendStrength decision, World world, Decisions decisions) { bool progress = false; // The defend strength is equal to one plus, at least, the number of known successful // supports, and at most, also the unresolved supports were they to resolve to successes. int min = 1; int max = 1; foreach (SupportMoveOrder support in decision.Supports) { GivesSupport givesSupport = decisions.GivesSupport[support]; progress |= ResolveDecision(givesSupport, world, decisions); if (givesSupport.Outcome == true) min += 1; if (givesSupport.Outcome != false) max += 1; } progress |= decision.Update(min, max); return progress; } private bool ResolvePreventStrength(PreventStrength decision, World world, Decisions decisions) { bool progress = false; // If there is no path, the prevent strength is zero. var hasPath = decisions.HasPath[decision.Order]; progress |= ResolveDecision(hasPath, world, decisions); if (hasPath.Outcome == false) { progress |= decision.Update(0, 0); return progress; } // If there's a head to head battle and the opposing unit succeeds in moving, the prevent // strength is zero. if (decision.OpposingMove != null && decisions.DoesMove[decision.OpposingMove].Outcome == true) { progress |= decision.Update(0, 0); return progress; } // In all other cases, the prevent strength is equal to one plus, at least, the number of // known successful supports, and at most, also the unresolved supports were they to // resolve to successes. int min = 1; int max = 1; foreach (SupportMoveOrder support in decision.Supports) { GivesSupport givesSupport = decisions.GivesSupport[support]; progress |= ResolveDecision(givesSupport, world, decisions); if (givesSupport.Outcome == true) min += 1; if (givesSupport.Outcome != false) max += 1; } // The minimum stays at zero if the path or head to head move decisions are unresolved, as // they may resolve to one of the conditions above that forces the prevent strength to zero. if (!hasPath.Resolved || (decision.OpposingMove != null && !decisions.DoesMove[decision.OpposingMove].Resolved)) { min = 0; } progress |= decision.Update(min, max); return progress; } private bool ResolveDoesUnitMove(DoesMove decision, World world, Decisions decisions) { bool progress = false; // Resolve the move's attack strength. AttackStrength attack = decisions.AttackStrength[decision.Order]; progress |= ResolveDecision(attack, world, decisions); // In a head to head battle, the threshold for the attack strength to beat is the opposing // defend strength. Outside a head to head battle, the threshold is the destination's hold // strength. NumericAdjudicationDecision defense = decision.OpposingMove != null ? decisions.DefendStrength[decision.OpposingMove] : decisions.HoldStrength[decision.Order.Location.Province]; progress |= ResolveDecision(defense, world, decisions); // If the defense beats the attack, resolve the move to false. if (attack.MaxValue < defense.MinValue) { progress |= decision.Update(false); return progress; } // Check if a competing move will prevent this one. bool beatsAllCompetingMoves = true; foreach (MoveOrder order in decision.Competing) { PreventStrength prevent = decisions.PreventStrength[order]; progress |= ResolveDecision(prevent, world, decisions); // If the prevent beats the attack, resolve the move to false. if (attack.MaxValue < prevent.MinValue) { progress |= decision.Update(false); return progress; } // If the attack doesn't beat the prevent, it can't resolve to true. if (attack.MinValue < prevent.MaxValue) { beatsAllCompetingMoves = false; } } // If the attack didn't resolve to false because the defense or a prevent beat it, then // attempt to resolve it to true based on whether it beat the defense and all prevents. progress |= decision.Update(attack.MinValue > defense.MaxValue && beatsAllCompetingMoves); return progress; } }